
Towards Machine Learning Induction

Yutaka Nagashima12

1 CIIRC, Czech Technical University in Prague,
Prague, Czech Republic

2 Department of Computer Science, University of Innsbruck,
Innsbruck, Tyrol, Austria

Abstract

Induction lies at the heart of mathematics and computer science. However, automated
theorem proving of inductive problems is still limited in its power. In this abstract, we
first summarize our progress in automating inductive theorem proving for Isabelle/HOL.
Then, we present MeLoId, our approach to suggesting promising applications of induction
without completing a proof search.

1 PSL and Goal-Oriented Conjecturing for Isabelle/HOL

Previously, we developed PSL [4] for Isabelle/HOL [6] and its extension to conjecturing mecha-
nism [5] as initial steps towards the development of a smart proof search in Isabelle [2]. With
PSL one can write the following strategy for induction:

strategy DInd = Thens [Dynamic (Induct), Auto, IsSolved]

PSL’s Dynamic keyword creates variations of the induct method by specifying different com-
binations of promising arguments found in the proof goal and its background proof context.
Then, DInd combines these induction methods with the general purpose proof method, auto,
and is_solved, which checks if there is any proof goal left after applying auto. PSL keeps
applying the combination of a specialization of induct method and auto, until either auto

discharges all remaining sub-goals or DInd runs out of the variations of induct methods.
Sometimes it is necessary for human-engineers to come up with auxiliary lemmas, from

which they can derive the original goal. To automate this process, we developed a new atomic
strategy, Conjecture, as an extension to PSL. Given a proof goal, Conjecture first produces
various conjectures that might be useful to discharge the original proof goal, then inserts these
conjectures as the premise of the original goal. Thus, for each conjecture, PSL produces two
sub-goals: the first sub-goal states that the conjecture implies the original goal, and the second
sub-goal states that the conjecture indeed holds. With Conjecture integrated into PSL, one
can write the following strategy:

strategy CDInd = Thens [Conjecture, Fastforce, Quickcheck, DInd]

The sequential application of Fastforce prunes conjectures that are not strong enough to prove
the original goal, whereas the application of Quickcheck attempts to prune conjectures that
are equivalent to False. This way, we can narrow the search space by focusing on promising
conjectures; however, when proof goals require many applications of inductions and multiple
conjecturing steps, the search space blows up rapidly due to the various induct methods pro-
duced by the Dynamic keyword. Since the induct method usually preserves the provability of
proof goal, even when the induct method has arguments that are inappropriate to discharge
the proof goal, counter-example finders, such as Quickcheck, cannot discard them. To address
this problem, we are developing MeLoId to suggest how to apply induction without completing
a proof.

Towards Machine Learning Induction Nagashima

2 MeLoId: Machine Learning Induction

The figure below illustrates the overall architecture of MeLoId. Similarly to PaMpeR [3], which
suggests promising proof methods for a given proof goal and its underlying context, MeLoId
tries to learn how to apply induction effectively using human-written proof corpora as training
data. In the preparation phase, MeLoId collects invocations of the induct method appearing in
the proof corpora and converts each of them into a simpler format, a vector of booleans using an
assertion-based feature extractor. Then, MeLoId constructs a regression tree [1], which describes
not only which variations of the induct method are promising but also which assertions are
useful to make such recommendations in the recommendation phase.

The mechanism of MeLoId differs from that of PaMpeR in multiple ways. First of all, MeLoId
analyzes proof corpora via what we call active mining : MeLoId first creates various induct

methods with distinct combinations of arguments, applies each of them to the goal, and com-
pares their results. Secondly, the input to MeLoId’s assertions are the triples of a goal with
its context, the arguments to the induct method, and the sub-goal appearing after applying
induct, whereas PaMpeR’s assertions consider only the first two as input. MeLoId takes the
emerging sub-goals into considerations: Since the application of the induct method alone is
not time-consuming, we expect that it is desirable to improve the accuracy of recommendation
using the emerging sub-goals even at the cost of the extra time spent by the induct method.
Third, MeLoId assertions tend to analyze the structures of the triples, while PaMpeR’s assertions
tend to focus on the names of constants and types appearing in the proof goal at hand.

We have implemented the active mining mechanism and around 40 assertions. Our prelim-
inary experiment suggests that the feature extractor successfully distills the essence of some
undesirable combinations of arguments of induct. However, more comprehensive evaluation
and further engineering efforts remain as our future work.

[apply(induct s),
 apply(induct t),
 apply(induct u),
 apply(induct s t arbitrary: u), …]

decision tree
construction

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

full feature
extractor

active mining

about 40 assertions

large proof corpora

AFP and standard library

lemma “foo x y = bar x y”
apply(induct x arbitrary: y)

[(apply(induct x arbitrary: y), used),
 (apply(induct y arbitrary: x), not),
 (apply(induct arbitrary: y), used),
 (apply(induct x rule: bar.induct), not),…]

[([1,0,0,1,…1], used),
 ([0,1,0,1,…1], not),
 ([1,1,0,0,…1], used),
 ([0,1,0,0,…1], not), …]

lemma “f s t ==> g s u”

Dynamic
(Induct)

[[1,1,0,1,…1],
 [0,0,0,1,…1],
 [1,1,1,0,…1],
 [1,1,0,1,…1], …]

[(0.3, apply(induct s t arbitrary: u))
 (0.2, apply(induct s t)),
 (0.15, apply(induct t arbitrary: u)),
 (0.11, apply(induct u)), …]

2

Towards Machine Learning Induction Nagashima

3 Acknowledgments

This work was supported by the European Regional Development Fund under the project AI
& Reasoning (reg. no.CZ.02.1.01/0.0/0.0/15 003/0000466).

References

[1] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

[2] Yutaka Nagashima. Towards smart proof search for isabelle, 2017.

[3] Yutaka Nagashima and Yilun He. PaMpeR: Proof method recommendation system for Is-
abelle/HOL. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 2018, pages 362–372, New York, NY, USA, 2018. ACM.

[4] Yutaka Nagashima and Ramana Kumar. A proof strategy language and proof script generation for
Isabelle/HOL. In International Conference on Automated Deduction CADE 2017, 2017.

[5] Yutaka Nagashima and Julian Parsert. Goal-oriented conjecturing for Isabelle/HOL. In Florian
Rabe, William M. Farmer, Grant O. Passmore, and Abdou Youssef, editors, Intelligent Computer
Mathematics, pages 225–231, Cham, 2018. Springer International Publishing.

[6] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - a proof assistant for
higher-order logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

3

	PSL and Goal-Oriented Conjecturing for Isabelle/HOL
	MeLoId: Machine Learning Induction
	Acknowledgments

